WUSTL Course Listings Login with WUSTL Key
Search Results: Help Display: Open + Closed     Just Open     Just Closed View: Regular     Condensed     Expanded
24 courses found.
Brown PhD (S90)  (Dept. Info)Social Work and Public Health  (Policies)FL2024

S90 SWDT 5601Applied Deep Learning Using Health Data3.0 Units
Description:Data are now available to social scientists in a way and quantity that has never existed before, presenting unprecedented opportunities for advancing social research and practices through state-of-the-art data analytics. On the other hand, dealing with extensive, complex, unconventional "big data" (e.g., free text, image, video/audio recording) requires revolutionary analytic tools only made available during the past decade. Artificial intelligence (AI), characterized by machine and deep learning, has become increasingly recognized as an indispensable tool in modern social and behavioral sciences. For example, AI methodologies have been applied to enhance the effectiveness of diagnosis and prediction of disease conditions, advance understanding of human development and functioning, and improve the effectiveness of data management in various social and human services. As a subdomain of AI, deep learning is based on artificial neural networks in which multiple ("deep") layers of processing are used to extract higher-level features progressively from data. This layered representation enables modeling more complex, dynamic patterns than the traditional machine learning (which sometimes are called "shallow learning" as in contrast to deep learning), which finds its utility in analyzing the "big data"-data massive in scale and "messy" to work with (e.g., unstructured texts, images, audios, and videos). This course contributes to the overarching goal of training next-generation researchers in modern data analytics. It aims to equip students with the core knowledge and essential skills to apply deep learning models to address real-world problems. Through the course, students will familiarize themselves with computer programming in data science, learn state-of-the-art deep learning models, and apply them to social and behavioral questions. In addition, one essential field of deep learning applications is assisting decision-making through identifying patterns and trends, improving prediction precision, and automating evidence collection, synthetization, and dissemination. Students who master deep learning tools will be at the frontier to leverage the power of AI in analytics and practices.
Attributes:
Instruction Type:Classroom instruction Grade Options:C Fees:
Course Type:IdentSame As:S55 5601Frequency:Every Semester / History
SecDays       TimeBuilding / RoomInstructorFinal ExamSeatsEnrollWaits
01-T-----9:00A-12:00PTBAAnDefault - none20160
Actions:Books

S90 SWDT 6583Practicum in Research III2.0 Units
SecDays       TimeBuilding / RoomInstructorFinal ExamSeatsEnrollWaits
00TBASee Dept / FoustSee department2040
Desc:This section is for SW PhD students.
Actions:Books
01TBASee Dept / RamirezSee department2000
Desc:This section is for PHS PhD students.
Actions:Books
02TBASee Dept / TutlamSee department010
03TBASee Dept / IwelunmorSee department010

S90 SWDT 6591Practicum in Teaching I1.0 Unit
SecDays       TimeBuilding / RoomInstructorFinal ExamSeatsEnrollWaits
00TBASee Dept / FoustSee department2020
Desc:This section is for SW PhD students.
Actions:Books
01TBASee Dept / RamirezSee department2010
Desc:This section is for PHS PhD students.
Actions:Books
02TBASee Dept / EylerSee department2010
Actions:Books
03TBASee Dept / MastnakDefault - none2010
Actions:Books

S90 SWDT 6592Practicum in Teaching II1.0 Unit
SecDays       TimeBuilding / RoomInstructorFinal ExamSeatsEnrollWaits
00TBASee Dept / FoustSee department2030
Desc:This section is for SW PhD students.
Actions:Books
01TBASee Dept / RamirezSee department2000
Desc:This section is for PHS PhD students.
Actions:Books
02TBASee Dept / Moreland-RussellSee department010
03TBASee Dept / VonDeLindeSee department010
04TBASee Dept / LevySee department010
05TBASee Dept / BegaySee department010
06TBASee Dept / MastnakDefault - none010
07TBASee Dept / WashingtonDefault - none010

S90 SWDT 6593Practicum in Teaching III1.0 Unit
SecDays       TimeBuilding / RoomInstructorFinal ExamSeatsEnrollWaits
00TBASee Dept / FoustSee department2010
Desc:This section is for SW PhD students.
Actions:Books
01TBASee Dept / RamirezSee department2010
Desc:This section is for PHS PhD students.
Actions:Books
02TBASee Dept / EylerDefault - none010
03TBASee Dept / NasehSee department010

S90 SWDT 6910Generalized Linear Models3.0 Units
SecDays       TimeBuilding / RoomInstructorFinal ExamSeatsEnrollWaits
01-T-----1:00P-4:00PTBAGuoDefault - none20180
Actions:BooksSyllabus
Syllabi are provided to students to support their course planning; refer to the syllabus for constraints on use.

S90 SWDT 8840Doctoral Research0.0 Unit
SecDays       TimeBuilding / RoomInstructorFinal ExamSeatsEnrollWaits
00TBASee Dept / FoustDefault - none006
Desc:This section is for SW PhD students.
01TBASee Dept / RamirezDefault - none003
Desc:This section is for PHS PhD students.
02TBASee Dept / SherradenDefault - none020
03TBASee Dept / Jonson-ReidDefault - none040
04TBASee Dept / DuncanDefault - none010
05TBASee Dept / EdmondDefault - none010
06TBASee Dept / TabakDefault - none010
07TBASee Dept / Butler-BarnesDefault - none010
09TBASee Dept / SsewamalaDefault - none011
10TBASee Dept / BrownsonDefault - none010
11TBASee Dept / KreuterDefault - none020
12TBASee Dept / TraniDefault - none010
Label

Home/Ident

A course may be either a “Home” course or an “Ident” course.

A “Home” course is a course that is created, maintained and “owned” by one academic department (aka the “Home” department). The “Home” department is primarily responsible for the decision making and logistical support for the course and instructor.

An “Ident” course is the exact same course as the “Home” (i.e. same instructor, same class time, etc), but is simply being offered to students through another department for purposes of registering under a different department and course number.

Students should, whenever possible, register for their courses under the department number toward which they intend to count the course. For example, an AFAS major should register for the course "Africa: Peoples and Cultures" under its Ident number, L90 306B, whereas an Anthropology major should register for the same course under its Home number, L48 306B.

Grade Options
C=Credit (letter grade)
P=Pass/Fail
A=Audit
U=Satisfactory/Unsatisfactory
S=Special Audit
Q=ME Q (Medical School)

Please note: not all grade options assigned to a course are available to all students, based on prime school and/or division. Please contact the student support services area in your school or program with questions.